Integrating Relaxations for Combinatorial Optimization
نویسندگان
چکیده
In this thesis we explore two methods of computing lower bounds. We first discuss the Lagrangian Relaxation as it applies to the Golomb ruler problem, and then we explore adding multi-valued decision diagrams to an additive bounding scheme. The Golomb Ruler Problem asks to position n integer marks on a ruler such that all pairwise distances between the marks are distinct and the ruler has minimum total length. It is a notoriously challenging combinatorial problem, and provably optimal rulers are only known for n up to 27. Lower bounds can be obtained using linear programming (LP) formulations, but these are computationally expensive for large n. In Chapter 2 of this thesis, we propose a new method for finding lower bounds based on a Lagrangian relaxation. We apply a subgradient optimization scheme to find good bounds quickly, and we show experimentally that our method can find bounds that are very close to the optimal LP bound in a fraction of the time that is needed to compute the LP bound. We furthermore embed our Lagrangian bounds into a constraint programming search procedure, and show that these can help reduce the constraint programming search tree considerably. Additive bounding is a method of taking several algorithms for computing lower bounds, each of which typically exploits a different substructure of the problem, and combining them to produce a single lower bound which is larger than the lower bound that any of the individual algorithms can produce alone. Approximate multi-valued decision diagrams (MDDs) have recently been used to compute upper and lower bounds on several optimization problems. In Chapter 3 of this thesis, we show how we can integrate MDDs into an addivite bounding scheme.
منابع مشابه
Manipulating MDD Relaxations for Combinatorial Optimization
We study the application of limited-width MDDs (multivalued decision diagrams) as discrete relaxations for combinatorial optimization problems. These relaxations are used for the purpose of generating lower bounds. We introduce a new compilation method for constructing such MDDs, as well as algorithms that manipulate the MDDs to obtain stronger relaxations and hence provide stronger lower bound...
متن کاملConvex Relaxations and Integrality Gaps
We discuss the effectiveness of linear and semidefinite relaxations in approximating the optimum for combinatorial optimization problems. Various hierarchies of these relaxations, such as the ones defined by Lovász and Schrijver [47], Sherali and Adams [55] and Lasserre [42] generate increasingly strong linear and semidefinite programming relaxations starting from a basic one. We survey some po...
متن کاملRigorous Results in Combinatorial Optimization
Many current deterministic solvers for NP-hard combinatorial optimization problems are based on nonlinear relaxation techniques that use floating point arithmetic. Occasionally, due to solving these relaxations, rounding errors may produce erroneous results, although the deterministic algorithm should compute the exact solution in a finite number of steps. This may occur especially if the relax...
متن کاملLP Relaxations of Some NP-Hard Problems Are as Hard as Any LP
We show that solving linear programming (LP) relaxations of many classical NP-hard combinatorial optimization problems is as hard as solving the general LP problem. Precisely, the general LP can be reduced in linear time to the LP relaxation of each of these problems. This result poses a fundamental limitation for designing efficient algorithms to solve the LP relaxations, because finding such ...
متن کاملCombinatorial Optimization Problems in Engineering Applications
This paper deals with several combinatorial optimization problems. The most challenging such problem is the quadratic assignment problem. It is considered in both two dimensions (QAP) and in three dimensions (Q3AP) and in the context of communication engineering. Semidefinite relaxations are used to derive lower bounds for the optimum while heuristics are applied to either find upper bounds or ...
متن کاملPhase Transitions in Semidefinite Relaxations
Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficien...
متن کامل